


	Contaminant	Year Sampled	Level Detected	Unit Measurement	MCLG	MCL	Violatio n Y/N	Likely Source of Contamination
		Sumpled	ND/Low-High	incustrement	Microhi	ological Contaminants		
Total Call	iform Bacteria	2022	ND	N/A	0	Presence of coliform bacteria in	N	Naturally present in the environment
Iotal Coli	itorm Bacteria	2022	ND	N/A	0	5% of monthly samples If a routine sample and repeat	N	Naturally present in the environment
Fecal coliform and E.coli		2020	ND	N/A	0	sample are total coliform positive, and one is also fecal coliform or <i>E.</i> <i>coli</i> positive	N	Human and animal fecal waste
			•		Inor	ganic Contaminants		
Arsenic		2022	o	ррЬ	o	10	N	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production waste
Barium		2022	0.044	ppm	2	2	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide		2022	7	ррь	200	200	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride		2022	1	ppm	4	4	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate		2022	0.9	ppm	10	10	N	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
Selenium		2022	0.6	ppb	50	50	N	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium		2022	55.3	ppm	500	none	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mine
Sulfate		2022	9.6	ppm	1000	1000	N	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from croplan
Total Dissolved Solids (TDS)		2022	292	ppm	2000	2000	N	Erosion of natural deposit
					L	ead and Copper		
	a. 90% results b. # of sites that exceed the AL	2020	0.122 b. 0	ppm	1.3	AL=1.3	N	Corrosion of household plumbing systems; erosion of natural deposits
Lead	a. 90% results b. # of sites that exceed the AL	2020	2.2 b. 0	ppb	0	AL=15	N	Corrosion of household plumbing systems, erosion of natural deposits
	b. # of sites that exceed the AL		B. U		Regu	lated Contaminants	I	
	otal trihalomethanes]	2022	6.8	ppb	0	80	N	By-product of drinking water disinfection
		1	1		Radio	active Contaminants	I	
Alpha Em	hitters	2022	0.73	pCi/L	0	15	N	Erosion of natural deposits
Radium 2	228	2022	0.87	pCi/L	0	5	N	Erosion of natural deposits
						Turbidity		
Turbidity		2022	1.7	NTU	0	0.3	N	Soil runoff
EPA req	uires monitoring of over 80 dri	nking water	contaminants.	Those contamin	ants liste	d in the table above are the only	y contami	nants detected in your drinking water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from: Safe Drinking Water Hotline: (800) 426-4791	inking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The esence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and p ealth effects can be obtained by calling the EPA's Safe Drinking Water Hotline: (800) 426-4791.	otential
Safe Drinking Water Hotline: (800) 426-4791	persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other in stem disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinki ater from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium	mmune ng
	fe Drinking Water Hotline: (800) 426-4791	
RAW		