


		[1		1	TEST RESULTS	1	
	Contaminant	Year Sampled	Level Detected ND/Low-High	Unit Measurement	MCLG	MCL	Violation Y/N	Likely Source of Contamination
					Microb	iological Contaminants		
Total Col	iform Bacteria	2022	ND	N/A	0	Presence of coliform bacteria in 5% of monthly samples	N	Naturally present in the environment
Fecal coliform and <i>E. coli</i>		2017	ND	N/A	o	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or <i>E.</i> <i>coli</i> positive	N	Human and animal fecal waste
					Inor	ganic Contaminants		
Arsenic		2020	0.9	ppb	10	10	N	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium		2020	0.064	ppm	2	2	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride		2020	0.2	ppm	4	4	N	Erosion of natural deposites; Water additive which promotes strong teeth; Discharge from fertilizer and alluminum factories.
Nitrate (as Nitrogen)		2022	2.1	ppm	10	10	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium		2020	5.4	ppb	50	50	N	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium		2020	129	ppm	500	None set by EPA	N	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.
Sulfate		2020	77	ppm	1000	1000	N	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved solids)		2020, 2022	816	ppm	2000	2000	N	Erosion of natural deposits
	r		1			ead and Copper	1	
Copper	a. 90% results b. # of sites that exceed the AL	2021	a064 b. 0	ppm	1300	AL=1.3	N	Corrosion of household plumbing systems; erosion of natural deposits
Lead	a. 90% results b. # of sites that exceed the AL	2021	a. 1 b. 0	ppb	15	AL=15	N	Corrosion of household plumbing systems, erosion of natural deposits
					Regu	lated Contaminants		
TTHM [T	otal trihalomethanes]	2016	-1	ppb	0	80	N	By-product of drinking water disinfection
			•		Radio	active Contaminants		•
Alpha emitters		2020	5.7	pCi/1	0	15	N	Erosion of natural deposits
Radium 226/228		2020	1.1	pCi/1	0	5	N	Erosion of natural deposits
						Turbidity		
Turbidity		2020	0.02	NTU	0	0.3	N	Soil Runoff
								ants detected in your drinking water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from: Safe Drinking Water Hotline: (800) 426-4791	inking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The esence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and p ealth effects can be obtained by calling the EPA's Safe Drinking Water Hotline: (800) 426-4791.	otential
Safe Drinking Water Hotline: (800) 426-4791	persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other in stem disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinki ater from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium	mmune ng
	fe Drinking Water Hotline: (800) 426-4791	
RAW		